Estimation of Daily Average Solar Radiation Using The Angström & Prescott Model Under The Conditions of Van, Turkey


Selçuk USTA
Van Yuzuncu Yil University, Van Vocational School, Construction Technology of Department, Van/Turkey,
DOI : https://doi.org/10.58806/ijmir.2024.v1i2n01

Abstract

Solar radiation (Rs), which has been widely used as a renewable clean energy source in recent years, is one of the main factors that ensure the sustainability of many biological and chemical processes such as photosynthesis, evaporation, and evapotranspiration. In this context, accurately measured or estimated Rs data are needed to maximise the benefit from the sun. This study aims to develop a calibration equation for the Angström & Prescott solar radiation estimation model that is compatible with the semi–arid to arid climatic and environmental conditions of Van Province. The calibration coefficients (as= 0.19, bs= 0.50) of this model were determined via the Microsoft Excel solver add-on, using the monthly averages of the daily sunshine duration and Rs data measured between 2012 and 2020. The calibration equation created with these coefficients was tested with daily current climatic data measured between 2012 and 2020, and daily average Rs values ranging between 5.13–25.93 MJ m−2 day−1 were estimated. The daily average measured Rs values in the same years were between 3.45–26.49 MJ m−2 day−1. The daily average Rs values with an accuracy of 87.00% (MAPE= 13.00%) were estimated with the Angström & Prescott model calibration equation. It was concluded that the daily average solar radiation values estimated by this model could be used instead of the measured values (P> 0.05, n= 365).

Keywords:

Evapotranspiration, Calibration, Solar Radiation, Estimation model.

References:

1) Şeker, M. (2021). Estimation of solar radiation based on meteorological data using artificial neural network (ANN). Dokuz Eylül University Faculty of Engineering Journal of Science and Engineering (DEUFMD), 23(69), 923-935. https://doi.org/10.21205/deufmd.2021236920

2) Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y., & Ruslan, M. H. (2015). Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews, 51, 1191-1204. https://doi.org/10.1016/j.rser.2015.07.026

3) Varınca, K. B., & Talha, M. (2006). Türkiye’de güneş enerjisi potansiyeli ve bu potansiyelin kullanım derecesi, yöntemi ve yaygınlığı üzerine bir araştırma, I. Ulusal Güneş ve Hidrojen Enerjisi Kongresi (UGHEK 2006), 21-23 Haziran, Eskişehir, ss. 270-275.

4) Özdemir, Y. (2012). Determination of the distribution of solar radiation in Turkey by satellite based quadratic model, M.Sc. Thesis, Gazi University.

5) Wang, K., & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: observation, modeling, climatology and climatic variability. Reviews of Geophysics, 50 (2), 1-54. https://doi.org/10.1029/2011RG000373

6) Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., & König-Langlo, G. (2013). The global energy balance from a surface perspective. Climate Dynamics, 40, 3107-3134. https://doi.org/10.1007/s00382-012-1569-8

7) Adams, P. (1992). Crop nutrition in hydroponics. Acta Horticulturae, 323, 289-306.

8) Katsoulas, N., Kittas, C., Dimokas, G. C., & Lykas, C. (2006). Effect of irrigation frequency on rose flower production and quality. Biosystems Engineering, 93, 237-244. https://doi.org/10.1016/j.biosystemseng.2005.11.006

9) Jovicich, E., & Cantliffe, D. J. (2007). Bell pepper fruit yield and quality as influenced by solar radiation–based irrigation and container media in a passively ventilated greenhouse. HortScience, 42(3), 642-652. https://doi.org/10.21273/ HORTSCI.42.3.642

10) Tsirogiannis, I., Katsoulas, N., & Kittas, C. (2010). Effect of irrigation scheduling on gerbera flower yield and quality. American Society for Horticultural Science, 45(2), 265-270. https://doi.org/10.21273/HORTSCI.45.2.265

11) Casadesus, J., Mata, M., Marsal, J., & Girona, J (2011). Automated irrigation of apple trees based on measurements of light interception by the canopy. Biosystems Engineering, 108(3), 220-226. https://doi.org/10.1016/j.biosystemseng.2010.12.004

12) Yağcıoğlu, A., Demir, V., & Günhan, T. (2004). A computation procedure for estimating the effective transmitted sun radiation into the greenhouse - Part I. Journal of Agriculture Faculty of Ege University, 41(2), 143-154.

13) Giacomelli, G. A., & Ting, K. C. (1999). Horticultural and engineering considerations for the design of integrated greenhouse plant production systems. Acta Horticulturae, 481, 475-481. https://doi.org/10.17660/ActaHortic.1999.481.55

14) Koluman, N., Daşkıran, İ., & Şener, B. (2013). The heat strees effect on T4 (Thyroxin), T3 (Triiodothyronine), costisol hormones of goats in rearing extensive systems. Journal of Tekirdag Agricultural Faculty, 10(3), 29-136.

15) Alkoyak, K., & Çetin, O. (2016). Heat stress and prevention ways in dairy cattle. Journal of Bahri Dagdas Animal Research, 5(1), 40-55.

16) Ener Ruşen, S. (2017). Determination of the global solar radiation potential using heliosat method for Karaman. Omer Halisdemir University Journal of Engineering Sciences, 6(2), 467-474. https://doi.org/10.28948/ngumuh.341286

17) Angström, A. (1924). Solar and terrestrial radiation. Journal of Royal Meteorological Society, 50, 121-126.

18) Prescott, J. A. (1940). Evaporation from water surface in relation to solar radiation. Transactions of the Royal Society of Australia, 46, 114-118.

19) Almorox, J., & Hontoria, C. (2004). Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management, 45(9-10), 1529-1535. https://doi.org/10.1016/j.enconman.2003.08.022

20) Newland, F. J. (1989). A study of solar radiation models for the coastal region of South China. Solar Energy, 43(4), 227-235. https://doi.org/10.1016/0038-092X(89)90022-4

21) Bahel, V., Bakhsh, H., & Srinivasan, R. (1987). A correlation for estimation of global solar radiation. Energy, 12(2), 131-135. https://doi.org/10.1016/0360-5442(87)90117-4

22) Toğrul, I. T., & Toğrul, H. (2002). Global solar radiation over Turkey, comparison of predicted and measured data. Renewable Energy, 25, 55-67. https://doi.org/10.1016/S0960-1481(00) 00197-X

23) Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering, 108, 223-230.

24) Bristow, K. L., & Campbell, G. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. and Forest Meteorology, 31, 59-166. https://doi.org/10.1016/0168-1923(84)900 17-0

25) Hargreaves, G. L., Hargreaves, G. H., & Riley, P. (1985). Irrigation water requirement for the Senegal River Basin. Journal of Irrigation and Drainage Engineering, 111(3), 265-275. https://doi.org/10.1061/(ASCE)0733-9437(1985)111:3(265)

26) Donatelli, M., & Campbell G. S. (1998). A Simple model to estimate global solar radiation, V. European Society of Agronomy Congress, June 28-July 2, Nitra, ss. 133-134.

27) Hunt, L. A., Kucharb, L., & Swanton, C. J. (1998). Estimation of solar radiation for use in crop modeling. Agricultural and Forest Meteorology, 91, 293-300.

28) Chen, R. S., Ersi, K., Yang, J. P., Lu, S. H., & Zhao, W. Z. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion Manag., 45, 1759-1769. https://doi.org/10.1016/j.enconman.2003.09.019

29) Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews, 21, 798-821. https://doi.org/10.1016/j.rser.2012.12.043(2013).

30) Sabziparvar, A. A., & Shetaee, H. (2007). Estimation of global solar radiation in arid and semi-arid climates of East and West Iran. Energy, 32(5), 649-655. https://doi.org/10.1016/j.energy.2006.05.005

31) Raoof, M., & Mobaser, J. A. (2019). Reference evapotranspiration estimation using a locally adjusted coefcient of angström’s radiation model in an arid-cold region. Journal of Agric. Sci. and Techn., 21(2), 487-499.

32) Martínez-Lozano, J. A., Tena, F., Onrubia, J. E., & De La Rubia, J. (1984). The historical evolution of the Angström formula and its modifications: A review and bibliography. Agricultural and Forest Meteorology, 33, 109-128.

33) De Medeiros, F. J., Silva, C. M., & Bezerra, B. G. (2017). Calibration of Angström-Prescott equation to estimate daily solar radiation on Rio Grande do Norte State, Brazil. Artigo Revista Brasileira de Meteorologia, 32(3), 409-416. https://doi.org/10.1590/0102-77863230008

34) Allen, R. G., Pereire, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56. Available at https://www.fao.org/4/X0490E/X0490E00.htm (accessed on 18 Jun 2023).

35) Almorox, J., Benito, M., & Hontoria, C. (2008). Estimation of global solar radiation in Venezuela. INCI, 33(4), 280-283.

36) Khalili, A., & Rezai-e Sadr, H. (1997). Estimation of global solar radiation over Iran based on climatological data. Geographical Research Quarterly, 46, 15-35.

37) Sabziparvar, A. A., Mousavi, R., Marofi, S., Ebrahimipak, N. A., & Heidari, M. (2013). An improved estimation of the Angström-Prescott radiation coefficients for the FAO56 Penman-Monteith evapotranspiration method. Water Resources Management, 27(8), 2839-2854. https://doi.org/10.1007/ s11269-013-0318-z

38) Trnka, M., Eitzinger, J., Kapler, P., Dubrovský, M., Semerádová, D., Žalud, Z., & Formayer, H. (2007). Effect of estimated daily global solar radiation data on the results of crop growth models. Sensors, 7, 2330-2362.

39) Yin, Y., Wu, S., Zheng, D., & Yang, Q. (2008). Radiation calibration of FAO56 Penman–Monteith model to estimate reference crop evapotranspiration in China. Agricultural water management, 95, 77-84.

40) Liu, X., Mei, X., Li, Y., Wang, Q., Zhang, Y., & Porter, J. (2009). Variation in reference crop evapotranspiration caused by the Angström–Prescott coefcient: Locally calibrated versus the FAO recommended. Agricultural water manag., 96(7), 1137-1145. https://doi.org/10.1016/j.agwat.2009.03.005

41) Mousavi, R., Sabziparvar, A. A., Marof, S., Ebrahimi Pak, N. A., & Heydari, M. (2014). Calibration of the Angström-Prescott solar radiation model for accurate estimation of reference evapotranspiration in the absence of observed solar radiation. Theoretical and Applied Climatology, 119(1-2), 43-54. https://doi.org/10.1007/s00704-013-1086-7

42) Turkish State Meteorological Service. (2022). Van province climate data. Ankara: General Directorate of State Meteorology Data Center.

43) Cobaner, M., Çıtakoğlu, H., Haktanır, T., & Yelkara F. (2015). Determination of optimum Hargreaves-Samani equation for Mediterranean region. DUJE (Dicle University Journal of Engineering), 7(2), 181-189.

44) Maiseli, B. J. (2019). Optimum design of chamfer masks using symmetric mean absolute percentage error. EURASIP Journal on Image and Video Processing, 74, 1-15. https://doi.org/10.1186/s13640-019-0475-y

45) Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134), 1-11. https://doi.org/10.1098/rsif.2017.0213

46) Malekinezhad, H. (2012). Comparative study of climatic parameters affecting evaporation in central and souther coastal areas in Iran. In Water Resources and Wetlands Conference Preceeding, 14-16 September, Tulcea, Romania, ss. 290-295.

47) Isikwue, B. C., Audu, M. O., & Eweh, E. J. (2015). Correlation of evapotranspiration with climatic parameters in some selected cities in Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 5(4), 103-115.

48) Mahida, H. R., & Patel, V. N. (2015). Impact of climatological parameters on reference crop evapotranspiration using multiple linear regrassion analysis. SSRG International Journal of Civil Eng., 2(1), 22-25.

49) Korkmaz, A., Gökmen Yılmaz, F., Harmankaya, M., & Gezgin, S. (2023). Reduction of Lime-Based Iron Chlorosis in Apple Trees. Academic Journal of Agriculture, 12(1), 127-134. https://doi.org/10.29278/azd.1263559